Diferencia entre revisiones de «Equidad y corrección de sesgos en Aprendizaje Automático»

De FdIwiki ELP
Saltar a: navegación, buscar
(Métricas Sahil Verma; Julia Rubin, Fairness Definitions Explained. Consultado 15 December 2019)
(Reject Option based Classification (ROC) Faisal Kamiran; Asim Karim; Xiangliang Zhang, Decision Theory for Discrimination-aware Classification. Retrieved 17 December 2019)
Línea 256: Línea 256:
 
Entre las ventajas del post-procesamiento están que la técnica se puede aplicar después de usar cualquier clasificador, sin necesidad de modificarlo, y obtiene buenos resultados mejorando métricas de equidad. Entre los inconvenientes, es necesario consultar el valor del atributo protegido durante el post-procesamiento y se restringe la libertad del programador para regular el compromiso entre equidad y exactitud.<ref name="datascience"/>
 
Entre las ventajas del post-procesamiento están que la técnica se puede aplicar después de usar cualquier clasificador, sin necesidad de modificarlo, y obtiene buenos resultados mejorando métricas de equidad. Entre los inconvenientes, es necesario consultar el valor del atributo protegido durante el post-procesamiento y se restringe la libertad del programador para regular el compromiso entre equidad y exactitud.<ref name="datascience"/>
  
==== Reject Option based Classification (ROC) <ref name="roc"> Faisal Kamiran; Asim Karim; Xiangliang Zhang, [http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.722.3030&rep=rep1&type=pdf ''Decision Theory for Discrimination-aware Classification'']. Retrieved 17 December 2019</ref> ====
+
==== ''Reject Option based Classification'' <ref name="roc"> Faisal Kamiran; Asim Karim; Xiangliang Zhang, [http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.722.3030&rep=rep1&type=pdf ''Decision Theory for Discrimination-aware Classification'']. Retrieved 17 December 2019</ref> ====
  
Given a classifier let <!-- <math display="inline"> P(+|X) </math> --> [[File: roc_formula_1.JPG|1000x1000px|frameless]] be the probability computed by the classifiers as the probability that the instance <!-- <math display="inline"> X </math> --> [[File: X.JPG|1000x1000px|frameless|text-bottom]] belongs to the positive class +. When <!-- <math display="inline"> P(+|X) </math> --> [[File: roc_formula_1.JPG|1000x1000px|frameless]] is close to 1 or to 0, the instance <!-- <math display="inline"> X </math> --> [[File: X.JPG|1000x1000px|frameless|text-bottom]] is specified with high degree of certainty to belong to class + or - respectively. However, when <!-- <math display="inline"> P(+|X) </math> --> [[File: roc_formula_1.JPG|1000x1000px|frameless]] is closer to 0.5 the classification is more unclear.
+
Dado un [[wikipedia:es:clasificación estadística | clasificador]], sea <!-- <math display="inline"> P(+|X) </math> --> [[File: roc_formula_1.JPG|1000x1000px|frameless]] la probabilidad calculada por este de que el sujeto <!-- <math display="inline"> X </math> --> [[File: X.JPG|1000x1000px|frameless|text-bottom]] pertenezca a la clase positiva. Cuando <!-- <math display="inline"> P(+|X) </math> --> [[File: roc_formula_1.JPG|1000x1000px|frameless]] sea cercano a 1 o 0, el sujeto <!-- <math display="inline"> X </math> --> [[File: X.JPG|1000x1000px|frameless|text-bottom]] será clasificado, con un alto grado de seguridad, como perteneciente a la clase positiva o negativa respectivamente. Sin embargo, cuando <!-- <math display="inline"> P(+|X) </math> --> [[File: roc_formula_1.JPG|1000x1000px|frameless]] está más próximo a 0.5, la clasificación no está clara.
  
We say <!-- <math display="inline"> X </math> --> [[File: X.JPG|1000x1000px|frameless|text-bottom]] is a "rejected instance" if <!-- <math display="inline"> max(P(+|X), 1-P(+|X)) \leq \theta </math> --> [[File: roc_formula_2.JPG|1000x1000px|frameless]] with a certain <!-- <math display="inline"> \theta </math> --> [[File: Theta.JPG|1000x1000px|frameless|text-bottom]] such that <!-- <math display="inline"> 0.5 < \theta < 1 </math> --> [[File: roc_formula_3.JPG|1000x1000px|frameless|text-bottom]].
+
Decimos que <!-- <math display="inline"> X </math> --> [[File: X.JPG|1000x1000px|frameless|text-bottom]] es un ''sujeto rechazado'' si <!-- <math display="inline"> max(P(+|X), 1-P(+|X)) \leq \theta </math> --> [[File: roc_formula_2.JPG|1000x1000px|frameless]] con cierto <!-- <math display="inline"> \theta </math> --> [[File: Theta.JPG|1000x1000px|frameless|text-bottom]] tal que <!-- <math display="inline"> 0.5 < \theta < 1 </math> --> [[File: roc_formula_3.JPG|1000x1000px|frameless|text-bottom]].
  
The algorithm of "ROC" consists on classifying the non rejected instances following the rule above and the rejected instances as follows: if the instance is an example of a deprived group (<!-- <math>X(A) = a</math> --> [[File: roc_formula_3.JPG|1000x1000px|frameless|text-bottom]]) then label it as positive, otherwise label it as negative.
+
El algoritmo consiste en clasificar los sujetos no rechazados siguiendo la regla explicada al principio y los rechazados de la siguiente manera: si la instancia es un ejemplo de grupo desprivilegiado (<!-- <math>X(A) = a</math> --> [[File: roc_formula_3.JPG|1000x1000px|frameless|text-bottom]]) entonces clasificarla como positivo, en el otro caso, clasificarla como negativo.
  
We can optimize different measures of discrimination <!-- (link) --> as functions of <!-- <math display="inline"> \theta </math> --> [[File: Theta.JPG|1000x1000px|frameless|text-bottom]] to find the optimal <!-- <math display="inline"> \theta </math> --> [[File: Theta.JPG|1000x1000px|frameless|text-bottom]] for each problem and avoid becoming discriminatory against the privileged group.
+
Podemos optimizar diferentes medidas de discriminación como funciones de <!-- <math display="inline"> \theta </math> --> [[File: Theta.JPG|1000x1000px|frameless|text-bottom]] para encontrar el <!-- <math display="inline"> \theta </math> --> [[File: Theta.JPG|1000x1000px|frameless|text-bottom]] óptimo para cada problema y evitar volvernos discriminatorios contra el grupo privilegiado.
  
 
== References ==
 
== References ==
 
<references />
 
<references />

Revisión de 20:34 17 dic 2019

Versión en inglés: Fairness and bias correction in Machine Learning

En aprendizaje automático, un algoritmo es justo, o tiene equidad si sus resultados son independientes de un cierto conjunto de variables que consideramos sensibles y no relacionadas con él (p.e.: género, raza, orientación sexual, etc.).

Criterios de equidad en problemas de clasificación[1]

En problemas de clasificación, un algoritmo aprende una función para predecir una característica discreta Y.JPG, la variable objetivo, a partir de unas características conocidas X.JPG. Modelizamos A.JPG como una variable aleatoria que codifica algunas características contenidas o implícitamente codificadas en X.JPG que consideramos características protegidas (género, etnia, orientación sexual, etc.). Por último, denotamos por R.JPG la predicción del clasificador. Ahora pasamos a definir tres criterios principales para evaluar si un clasificador es justo, es decir, si sus predicciones no están influenciadas por algunas de las variables protegidas.

Independencia

Decimos que las variables aleatorias R,A.JPG satisfacen la independencia si las características protegidas A.JPG son estadísticamente independientes a la predicción R.JPG, y escribimos RbotA.JPG.

También podemos expresar esta noción con la siguiente fórmula:

IndependenceDef.JPG

Esto significa que la probabilidad de ser clasificado por el algoritmo en cada uno de los grupos es la misma para dos individuos con características protegidas distintas.

Se puede dar otra noción equivalente de independencia utilizando el concepto de información mutua entre variables aleatorias, definida como

MutInf.JPG

En esta fórmula, H.JPG es la entropía de la variable estadística. Entonces R,A.JPG satisface independencia si I(R,A).JPG.

Una posible relajación de la definición de independencia pasa por la introducción de una variable positiva EpsMq0.JPG, y viene dada por la fórmula:

IndependenceRel1.JPG

Por último, otra posible relajación pasa por requerir IndependenceRel2.JPG.

Separación

Decimos que las variables aleatorias R,A,Y.JPG satisfacen la separación si las características protegidas A.JPG son estadísticamente independientes a la predicción R.JPG dado el valor objetivo Y.JPG, y escribimos RbotAbarY.JPG.

También podemos expresar esta noción con la siguiente fórmula:

SeparationDef.JPG

Esto significa que la probabilidad de ser clasificado por el algoritmo en cada uno de los grupos es la misma para dos individuos con características protegidas distintas dado que ambos pertenecen al mismo grupo (tienen la misma variable objetivo).

Otra expresión equivalente, en el caso de tener una variable objetivo binaria, es la que exige que la tasa de verdaderos positivos y la tasa de falsos positivos sean iguales (y por tanto la tasa de falsos negativos y la tasa de verdaderos negativos también lo sean) para cada valor de las características protegidas:

SeparationDef1.JPG
SeparationDef2.JPG

Por último, una posible relajación de las definiciones dadas es que la diferencia entre tasas sea un número positivo menor que una cierta variable EpsMq0.JPG, en lugar de igual a cero.

Suficiencia

Decimos que las variables aleatorias R,A,Y.JPG satisface la suficiencia si las características protegidas A.JPG son estadísticamente independientes al valor objetivo Y.JPG dada la predicción R.JPG, y escribimos YbotAbarR.JPG.

También podemos expresar esta noción con la siguiente fórmula:

SufficiencyDef.JPG

Esto significa que la probabilidad de estar en realidad en cada uno de los grupos es la misma para dos individuos con características protegidas distintas dado que la predicción los englobe en el mismo grupo.

Relaciones entre definiciones

Por último, resumimos algunos de los principales resultados que relacionan las tres definiciones dadas arriba:

Métricas [2]

La mayoría de medidas de equidad dependen de diferentes métricas, de modo que comenzaremos por definirlas. Cuando trabajamos con un clasificador binario, tanto la clase predicha por el algoritmo como la real pueden tomar dos valores: positivo y negativo. Empecemos ahora explicando las posibles relaciones entre el resultado predicho y el real:
Matriz de confusión
  • Verdadero positivo (TP): Cuando el resultado predicho y el real pertenecen a la clase positiva.
  • Verdadero negativo (TN): Cuando el resultado predicho y el real pertenecen a la clase negativa.
  • Falso positivo (FP): Cuando el resultado predicho es positivo pero el real pertenece a la clase negativa.
  • Falso negativo (FN): Cuando el resultado predicho es negativo pero el real pertenece a la clase positiva.

Estas relaciones pueden ser representadas fácilmente con una matriz de confusión, una tabla que describe la precisión de un modelo de clasificación. En esta matriz, las columnas y las filas representan instancias de las clases predichas y reales, respectivamente.

Utilizando estas relaciones, podemos definir múltiples métricas que podemos usar después para medir la equidad de un algoritmo:

  • Valor predicho positivo (PPV): la fracción de casos positivos que han sido predichos correctamente de entre todas las predicciones positivas. Con frecuencia, se denomina como precisión, y representa la probabilidad de que una predicción positiva sea correcta. Viene dada por la siguiente fórmula:
PPV.JPG
  • Tasa de descubrimiento de falsos (FDR): la fracción de predicciones positivas que eran en realidad negativas de entre todas las predicciones positivas. Representa la probabilidad de que una predicción positiva sea errónea, y viene dada por la siguiente fórmula:
FDR.JPG
  • Valor predicho negativo (NPV): la fracción de casos negativos que han sido predichos correctamente de entre todas las predicciones negativas. Representa la probabilidad de que una predicción negativa sea correcta, y viene dada por la siguiente fórmula:
NPV.JPG
  • Tasa de omisión de falsos (FOR): la fracción de predicciones negativas que eran en realidad positivas de entre todas las predicciones negativas. Representa la probabilidad de que una predicción negativa sea errónea, y viene dada por la siguiente fórmula:
FOR.JPG
  • Tasa de verdaderos positivos (TPR): la fracción de casos positivos que han sido predichos correctamente de entre todos los casos positivos. Con frecuencia, se denomina como exhaustividad, y representa la probabilidad de que los sujetos positivos sean clasificados correctamente como tales. Viene dada por la fórmula:
TPR.JPG
  • Tasa de falsos negativos (FNR): la fracción de casos positivos que han sido predichos de forma errónea como negativos de entre todos los casos positivos. Representa la probabilidad de que los sujetos positivos sean clasificados erróneamente como negativos, y viene dada por la fórmula:
FNR.JPG
  • Tasa de verdaderos negativos (TNR): la fracción de casos negativos que han sido predichos correctamente de entre todos los casos negativos. Representa la probabilidad de que los sujetos negativos sean clasificados correctamente como tales, y viene dada por la fórmula:
TNR.JPG
  • Tasa de falsos positivos (FPR): la fracción de casos negativos que han sido predichos de forma errónea como positivos de entre todos los casos negativos. Representa la probabilidad de que los sujetos negativos sean clasificados erróneamente como positivos, y viene dada por la fórmula:
FPR.JPG

Other fairness criteria

Relationship between fairnes criteria as shown in Barocas et al.[1]

The following criteria can be understood as measures of the three definitions given on the first section, or a relaxation of them. In the table[1] to the right we can see the relationships between them.

To define this measures specifically, we will divide them into three big groups as done in Verma et al.[2]: definitions based on predicted outcome, on predicted and actual outcomes, and definitions based on predicted probabilities and actual outcome.

We will be working with a binary classifier and the folowing notation: S.JPG refers to the score given by the classifier, which is the probability of a certain subject to be in the positive or the negative class. R.JPG represents the final classification predicted by the algorithm, and its value is usually derived from S.JPG, for example will be positive when S.JPG is above a certain threshold. Y.JPG represents the actual outcome, that is, the real classification of the individual and, finally, A.JPG denotes the sensitive attributes of the subjects.

Definitions based on predicted outcome

The definitions in this section focus on a predicted outcome R.JPG for various distributions of subjects. They are the simplest and most intuitive notions of fairness.

  • Group fairness, also referred to as statistical parity, demographic parity, acceptance rate and benchmarking. A classifier satisfies this definition if the subjects in the protected and unprotected groups have equal probability of being assigned to the positive predicted class. This is, if the following formula is satisfied:
Group fairness.JPG
  • Conditional statistical parity. Basically consists in the definition above, but restricted only to a subset of the attributes. With mathematical notation this would be:
Definitions1.JPG

Definitions based on predicted and actual outcomes

This definitions not only consider de predicted outcome R.JPG but also compare it to the actual outcome Y.JPG.

  • Predictive parity, also referred to as outcome test. A classifier satisfies this definition if the subjects in the protected and unprotected groups have equal PPV. This is, if the following formula is satisfied:
Predictive parity.JPG
Mathematically, if a classifier has equal PPV for both groups, it will also have equal FDR, satisfying the formula:
Predictive parity2.JPG
  • False positive error rate balance, also referred to as predictive equality. A classifier satisfies this definition if the subjects in the protected and unprotected groups have aqual FPR. This is, if the following formula is satisfied:
Predictive equality.JPG
Mathematically, if a classifier has equal FPR for both groups, it will also have equal TNR, satisfying the formula:
Predictive equality2.JPG
  • False negative error rate balance, also referred to as equal opportunity. A classifier satisfies this definition if the subjects in the protected and unprotected groups have equal FNR. This is, if the following formula is satisfied:
Equal opportunity.JPG
Mathematically, if a classifier has equal FNR for both groups, ti will also have equal TPR, satisfying the formula:
Equal opportunity2.JPG
  • Equalized odds, also referred to as conditional procedure accuracy equality and disparate mistreatment. A classifier satisfies this definition if the subjects in the protected and unprotected groups have equal TPR and equal FPR, satisfying the formula:
Equalized odds.JPG
  • Conditional use accuracy equality. A classifier satisfies this definition if the subjects in the protected and unprotected groups have equal PPV and equal NPV, satisfying the formula:
Conditional.JPG
  • Overall accuracy equality. A classifier satisfies this definition if the subject in the protected and unprotected groups have equal prediction accuracy, that is, the probability of a subject from one class to be assigned to it. This is, if it satisfies the following formula:
Overall.JPG
  • Treatment equality. A classifier satisfies this definition if the subjects in the protected and unprotected groups have an equal ratio of FN and FP, satisfying the formula:
Treatment.JPG

Definitions based on predicted probabilities and actual outcome

These definitions are based in the actual outcome Y.JPG and the predicted probability score S.JPG.

  • Test-fairness, also known as calibration or matching conditional frequencies. A classifier satisfies this definition if individuals with the same predicted probability score S.JPG have the same probability to be classified in the positive class when they belong to either the protected or the unprotected group:
Definitions2.JPG
  • Well-calibration. It's an extension of the previous definition. It states that when individuals inside or outside the protected group have the same predicted probability score S.JPG they must have the same probability of being classified in the positive class, and this probability must be equal to S.JPG:
Definitions3.JPG
  • Balance for positive class. A classifier satisfies this definition if the subjects constituting the positive class from both protected and unprotected groups have equal average predicted probability score S.JPG. This means that the expected value of probability score for the protected and unprotected groups with positive actual outcome Y.JPG is the same, satisfying the formula:
Balance positive.JPG
  • Balance for negative class. A classifier satisfies this definition if the subjects constituting the negative class from both protected and unprotected groups have equal average predicted probability score S.JPG. This means that the expected value of probability score for the protected and unprotected groups with negative actual outcome Y.JPG is the same, satisfying the formula:
Balance negative.JPG

Algoritmos

Se puede aplicar la equidad al aprendizaje automático desde tres perspectivas: pre-procesando los datos utilizados en el algoritmo, optimizando los objetivos durante el entrenamiento o procesando las respuestas tras la ejecución del algoritmo.

Preprocesamiento

Los algoritmos que corrigen el sesgo mediante preprocesamiento intentan eliminar información sobre ciertos atributos de los datos que pueden provocar un comportamiento injusto de la IA, al mismo tiempo que tratan de alterar estos datos lo menos posible. Eliminar del conjunto de datos una variable protegida no es suficiente, ya que otras variables pueden estar correlacionadas con ella.

Una posible forma de hacerlo consiste en asociar cada individuo del conjunto de datos a una representación intermedia en la que sea imposible determinar si pertenece o no a un grupo protegido, a la vez que se mantiene el resto de la información tanto como sea posible. Después, se ajusta la nueva representación del conjunto de datos para buscando el máximo acierto del algoritmo.

De este modo, los individuos se vinculan a una nueva representación en la que la probabilidad de que un miembro de un grupo protegido sea asociado a cierto valor de la nueva representación es la misma que la de un individuo no protegido. Así, es la nueva representación la que se utiliza para obtener la predicción para el individuo en vez de los datos originales. Como la representación intermedia se ha construido dando la misma probabilidad a cada individuo independientemente de si pertenecen al grupo protegido o no, esto queda oculto para el clasificador.

Se puede encontrar un ejemplo en Zemel y otros [3] en el que se utiliza una variable aleatoria multinomial como representación intermedia. En el proceso, se preserva toda la información excepto la que pueda conducir a decisiones sesgadas a la vez que se busca una predicción lo más correcta que sea posible.

Por un lado, este procedimiento tiene la ventaja de que los datos preprocesados se pueden utilizar para cualquier tarea de aprendizaje automático. Además, no hay que modificar el código del clasificador, ya que la corrección se aplica a los datos que se van a introducir en él. Por otro lado, los otros métodos obtienen mejores resultados tanto en acierto como en equidad. [4]

Reweighing [5]

La técnica del reweighing, en español reasignación de pesos, es un ejemplo de algoritmo de preprocesamiento. La idea consiste en asignar un peso a cada punto del conjunto de datos de tal manera que la discriminación ponderada es 0 respecto al grupo de interés.

Si el conjunto de datos D.jpg fuera no sesgado, la variable protegida A.JPG y la variable objetivo Y.JPG serían estadísticamente independientes y la probabilidad de la distribución conjunta sería el producto de las probabilidades de la siguiente manera:

Fairness formula 1.JPG

Sin embargo, en la vida real el conjunto de datos suele estar sesgado y las variables no son estadísticamente independientes por lo que la probabilidad observada es:

Fairness formula 2.JPG

Para compensar el sesgo, se asignan mayores pesos a los puntos no favorecidos y menores a los favorecidos. Para cada X D.JPG obtenemos:

Fairness formula 3.JPG

Una vez tenemos asignado a cada X.JPG un peso asociado calculamos la discriminación ponderada con respecto al grupo framelesss de la siguiente manera:

Fairness formula 4.JPG

Se puede demostrar que después de la asignación de los pesos la discriminación ponderada es 0.

Optimización durante el entrenamiento

Otra aproximación al problema es corregir el sesgo durante el entrenamiento. Esto puede hacerse añadiendo restricciones al objetivo del algoritmo.[6] Estas restricciones obligan al algoritmo a tener en cuenta la equidad, de forma que el máximo éxito no sea su único objetivo, sino también mantener ciertas métricas iguales tanto para el grupo protegido como para el resto de individuos. Por ejemplo, se puede añadir al algoritmo la condición de que la tasa de falsos positivos sea la misma para individuos del grupo protegido y para los que no lo son.

Las principales métricas que se utilizan en esta técnica son la tasa de falsos positivos, la tasa de falsos negativos y la tasa general de fallo. Es posible añadir sólo una o varias de estas restricciones al objetivo. Nótese que la igualdad de las tasas de falsos negativos implica la igualdad también de las tasas de verdaderos positivos, lo que significa igualdad de oportunidad. Tras añadir las restricciones al algoritmo, el problema puede volverse infactible y por tanto puede ser necesario relajarlas.

Esta técnica obtiene buenos resultados al mejorar la equidad, al mismo tiempo que mantiene una exactitud alta, y permite al programador elegir las métricas que mejor se ajusten a sus necesidades. Sin embargo, la técnica y las métricas utilizadas varían en función del problema y es necesario modificar el código del algoritmo, lo que no siempre es posible.[4]

Adversarial debiasing [7] [8]

Interacción entre "predictor" y "adversario" como se muestra en Joyce Xu[8]

Se entrenan dos clasificadores al mismo tiempo con algún método basado en el gradiente (p.e.: descenso de gradiente). El primero (el predictor) intenta resolver el problema de predecir la variable objetivo Y.JPG dada la entrada X.JPG, modificando sus pesos W.JPG para minimizar una función de pérdida Lpyy.JPG. El segundo (el adversario) intenta resolver el problema de predecir la variable sensible A.JPG, dado Ygorro.JPG modificando sus pesos U.JPG para minimizar otra función de pérdida Lpzz.JPG.

Una puntualización importante es que, para que se propague correctamente, la variable Ygorro.JPG de arriba debe referirse a la salida en bruto del clasificador y no a la salida discreta; por ejemplo, con una red neuronal artificial y un problema de clasificación Ygorro.JPG, se podría referir a la salida de la capa softmax.

A continuación, actualizamos U.JPG para minimizar LA.JPG en cada paso del entrenamiento según el gradiente Grad ula.JPG y modificamos W.JPG conforme a la expresión:

Fairness formula 5.JPG

donde Alpha.JPG es un hiperparámetro a elegir que puede variar en cada paso.

Representación gráfica de los vectores usados en adversarial debiasing como se muestra en Zhan y otros.[7]

La idea intuitiva consiste en que el predictor intente minimizar LP.JPG ((y de ahí el término Grad wlp.JPG) mientras, al mismo tiempo, maximice LA.JPG (y de ahí el término Alfa grad wla.JPG), de tal manera que el adversario fracase al predecir la variable sensible a partir de Ygorro.JPG.

El término Fairness formula 6.JPG evita que el predictor cambie de una forma que pueda ayudar al advesario disminuir su función de pérdida.

Se puede demostrar que entrenar un modelo de clasificación predictor con este algoritmo mejora la paridad demográfica con respecto a entrenarlo sin el adversario.

Post-procesamiento

La última técnica trata de corregir las respuestas del clasificador para alcanzar la equidad. En éste método, necesitamos hacer una predicción binaria para los individuos y tenemos un clasificador que devuelve una puntuación asociada a cada uno de ellos. Los individuos con puntuaciones altas tenderán a obtener una respuesta positiva, mientras que aquellos con una puntuación baja tendrán una respuesta negativa, pero necesitamos determinar el umbral a partir del cual se responde positiva o negativamente. Nótese que variar el umbral afecta al compromiso entre la tasa de verdaderos positivos y la tasa de verdaderos negativos, y en función del problema nos puede interesar mejorar una a costa de la otra.

Si la función de puntuación es justa, en el sentido de que es independiente del atributo protegido, entonces cualquier elección del valor umbral será también justa, pero este tipo de clasificadores tienden a sesgarse con facilidad, por lo que puede que necesitemos especificar un umbral distinto para cada grupo protegido. Una forma de hacerlo es estudiar las gráficas de la tasa de verdaderos positivos frente a la de verdaderos negativos para distintos valores del umbral (a esto se le conoce como curva ROC) y comprobar para qué valor del umbral las tasas son iguales para el grupo protegido y para el resto de individuos.[9]

Entre las ventajas del post-procesamiento están que la técnica se puede aplicar después de usar cualquier clasificador, sin necesidad de modificarlo, y obtiene buenos resultados mejorando métricas de equidad. Entre los inconvenientes, es necesario consultar el valor del atributo protegido durante el post-procesamiento y se restringe la libertad del programador para regular el compromiso entre equidad y exactitud.[4]

Reject Option based Classification [10]

Dado un clasificador, sea Roc formula 1.JPG la probabilidad calculada por este de que el sujeto X.JPG pertenezca a la clase positiva. Cuando Roc formula 1.JPG sea cercano a 1 o 0, el sujeto X.JPG será clasificado, con un alto grado de seguridad, como perteneciente a la clase positiva o negativa respectivamente. Sin embargo, cuando Roc formula 1.JPG está más próximo a 0.5, la clasificación no está clara.

Decimos que X.JPG es un sujeto rechazado si Roc formula 2.JPG con cierto Theta.JPG tal que Roc formula 3.JPG.

El algoritmo consiste en clasificar los sujetos no rechazados siguiendo la regla explicada al principio y los rechazados de la siguiente manera: si la instancia es un ejemplo de grupo desprivilegiado ( Roc formula 3.JPG) entonces clasificarla como positivo, en el otro caso, clasificarla como negativo.

Podemos optimizar diferentes medidas de discriminación como funciones de Theta.JPG para encontrar el Theta.JPG óptimo para cada problema y evitar volvernos discriminatorios contra el grupo privilegiado.

References

  1. 1,0 1,1 1,2 Solon Barocas; Moritz Hardt; Arvind Narayanan, Fairness and Machine Learning. Consultado el 15 de diciembre de 2019.
  2. 2,0 2,1 Sahil Verma; Julia Rubin, Fairness Definitions Explained. Consultado el 15 de diciembre de 2019
  3. Richard Zemel; Yu (Ledell) Wu; Kevin Swersky; Toniann Pitassi; Cyntia Dwork, Learning Fair Representations. Consultado el 1 de Diciembre de 2019
  4. 4,0 4,1 4,2 Ziyuan Zhong, Tutorial on Fairness in Machine Learning. Consultado el 1 de Diciembre de 2019
  5. Faisal Kamiran; Toon Calders, Data preprocessing techniques for classification without discrimination. Consultado el 17 de Diciembre de 2019
  6. Muhammad Bilal Zafar; Isabel Valera; Manuel Gómez Rodríguez; Krishna P. Gummadi, Fairness Beyond Disparate Treatment & Disparate Impact: Learning Classification without Disparate Mistreatment. Consultado el 1 de Diciembre de 2019
  7. 7,0 7,1 Brian Hu Zhang; Blake Lemoine; Margaret Mitchell, Mitigating Unwanted Biases with Adversarial Learning. Retrieved 17 December 2019
  8. 8,0 8,1 Joyce Xu, Algorithmic Solutions to Algorithmic Bias: A Technical Guide. Retrieved 17 December 2019
  9. Moritz Hardt; Eric Price; Nathan Srebro, Equality of Opportunity in Supervised Learning. Retrieved 1 December 2019
  10. Faisal Kamiran; Asim Karim; Xiangliang Zhang, Decision Theory for Discrimination-aware Classification. Retrieved 17 December 2019